Quantum mechanics

Home > Physics > Quantum mechanics

Study of the behavior of matter and energy at the atomic and subatomic level.

Introduction to Quantum Mechanics: A brief history of quantum mechanics, quantum theory, quantum states, and quantum superposition.
Wave-Particle Duality: The concept of wave-particle duality, wave functions, and the uncertainty principle.
Quantum Operators: Matrices, operators, and observables in quantum mechanics.
Schrödinger Equation: The Schrödinger equation, wave function collapse, and the time evolution of quantum states.
Quantum Measurement: The measurement problem, quantum decoherence, and the role of the observer.
Quantum Entanglement: The concept of entanglement, the Bell inequality, and quantum teleportation.
Quantum Computing: Quantum gates, quantum algorithms, and the potential of quantum computers.
Quantum Field Theory: Relativistic quantum mechanics, quantization of fields, and the standard model of elementary particles.
Applications of Quantum Mechanics: Quantum optics, quantum information theory, and quantum cryptography.
- "Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles."
- "It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science."
- "Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization); objects have characteristics of both particles and waves (wave-particle duality); and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle)."
- "Quantum mechanics arose gradually from theories to explain observations that could not be reconciled with classical physics, such as Max Planck's solution in 1900 to the black-body radiation problem, and the correspondence between energy and frequency in Albert Einstein's 1905 paper, which explained the photoelectric effect."
- "These early attempts to understand microscopic phenomena, now known as the 'old quantum theory,' led to the full development of quantum mechanics in the mid-1920s by Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born, Paul Dirac, and others."
- "In one of them, a mathematical entity called the wave function provides information, in the form of probability amplitudes, about what measurements of a particle's energy, momentum, and other physical properties may yield."
- "Objects have characteristics of both particles and waves (wave-particle duality)."
- "Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale."
- "Max Planck's solution in 1900 to the black-body radiation problem."
- "Albert Einstein's 1905 paper, which explained the photoelectric effect."
- "There are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle)."
- "Quantum mechanics is the foundation of all quantum physics."
- "Energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization)."
- "These early attempts to understand microscopic phenomena, now known as the 'old quantum theory.'"
- "Classical physics describes many aspects of nature at an ordinary (macroscopic) scale."
- "The modern theory is formulated in various specially developed mathematical formalisms."
- "Quantum mechanics provides a description of the physical properties of nature at the scale of atoms and subatomic particles."
- "Quantum mechanics is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science."
- "The wave function provides information, in the form of probability amplitudes, about what measurements of a particle's energy, momentum, and other physical properties may yield."
- "The old quantum theory led to the full development of quantum mechanics in the mid-1920s by Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born, Paul Dirac, and others."