General Relativity

Home > Physics > Mathematical physics > General Relativity

The study of gravity and its effects on space and time, including the study of the curvature of space-time.

"General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics."
"General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime."
"In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present."
"Some predictions of general relativity, however, are beyond Newton's law of universal gravitation in classical physics."
"These predictions concern the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light, and include gravitational time dilation, gravitational lensing, the gravitational redshift of light, the Shapiro time delay, and singularities/black holes."
"So far, all tests of general relativity have been shown to be in agreement with the theory."
"The time-dependent solutions of general relativity enable us to talk about the history of the universe and have provided the modern framework for cosmology, thus leading to the discovery of the Big Bang and cosmic microwave background radiation."
"Reconciliation of general relativity with the laws of quantum physics remains a problem, however, as there is a lack of a self-consistent theory of quantum gravity."
"Einstein's theory has astrophysical implications, including the prediction of black holes—regions of space in which space and time are distorted in such a way that nothing, not even light, can escape from them."
"Microquasars and active galactic nuclei are believed to be stellar black holes and supermassive black holes."
"It also predicts gravitational lensing, where the bending of light results in multiple images of the same distant astronomical phenomenon."
"Other predictions include the existence of gravitational waves, which have been observed directly by the physics collaboration LIGO and other observatories."
"In addition, general relativity has provided the base of cosmological models of an expanding universe."
"Widely acknowledged as a theory of extraordinary beauty, general relativity has often been described as the most beautiful of all existing physical theories."
"General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915."
"General relativity provides a unified description of gravity as a geometric property of space and time or four-dimensional spacetime."
"These predictions concern the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light, and include gravitational time dilation, gravitational lensing, the gravitational redshift of light, the Shapiro time delay, and singularities/black holes."
"So far, all tests of general relativity have been shown to be in agreement with the theory."
"The time-dependent solutions of general relativity enable us to talk about the history of the universe and have provided the modern framework for cosmology, thus leading to the discovery of the Big Bang and cosmic microwave background radiation."
"Reconciliation of general relativity with the laws of quantum physics remains a problem, however, as there is a lack of a self-consistent theory of quantum gravity."