Quantum Field Theory

Home > Physics > High-energy physics > Quantum Field Theory

The study of quantum systems with an infinite number of degrees of freedom, with a focus on describing the behavior of particles and fields.

"In theoretical physics, quantum field theory (QFT) is a theoretical framework combining classical field theory, special relativity, and quantum mechanics."
"QFT is used in particle physics to construct physical models of subatomic particles."
"QFT is used in condensed matter physics to construct models of quasiparticles."
"QFT treats particles as excited states (also called quanta) of their underlying quantum fields."
"Quantum fields, which are more fundamental than the particles."
"The equation of motion of the particle is determined by minimization of the action computed for the Lagrangian."
"The Lagrangian is a functional of fields associated with the particle."
"Interactions between particles are described by interaction terms in the Lagrangian involving their corresponding quantum fields."
"Each interaction can be visually represented by Feynman diagrams."
"According to perturbation theory in quantum mechanics."
"A theoretical framework combining classical field theory, special relativity, and quantum mechanics."
"Quantum fields are more fundamental than the particles."
"The equation of motion of the particle is determined by minimization of the action computed for the Lagrangian."
"Interactions between particles are described by interaction terms in the Lagrangian involving their corresponding quantum fields."
"Each interaction can be visually represented by Feynman diagrams."
"QFT is used in particle physics to construct physical models of subatomic particles."
"QFT is used in condensed matter physics to construct models of quasiparticles."
"Particles are treated as excited states (quanta) of quantum fields."
"The minimization of the action computed for the Lagrangian."
"Interactions between particles manifest as interaction terms in the Lagrangian."