Data Visualization

Home > Journalism > Data journalism > Data Visualization

Creating charts, graphs, and other visualizations to help communicate data insights to audiences.

"Data and information visualization (data viz or info viz) is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representations of a large amount of complex quantitative and qualitative data and information with the help of static, dynamic or interactive visual items."
"Intended for a broader audience to help them visually explore and discover, quickly understand, interpret and gain important insights into otherwise difficult-to-identify structures, relationships, correlations, local and global patterns, trends, variations, constancy, clusters, outliers and unusual groupings within data."
"Information visualization deals with multiple, large-scale and complicated datasets which contain quantitative (numerical) data as well as qualitative (non-numerical, i.e. verbal or graphical) and primarily abstract information."
"Tables, charts and graphs (e.g., pie charts, bar charts, line charts, area charts, cone charts, pyramid charts, donut charts, histograms, spectrograms, cohort charts, waterfall charts, funnel charts, bullet graphs, etc.), diagrams, plots (e.g., scatter plots, distribution plots, box-and-whisker plots), geospatial maps."
"Maps (such as tree maps), animations, infographics, Sankey diagrams, flow charts, network diagrams, semantic networks, entity-relationship diagrams, Venn diagrams, timelines, mind maps, etc."
"Emerging technologies like virtual, augmented and mixed reality have the potential to make information visualization more immersive, intuitive, interactive and easily manipulable and thus enhance the user's visual perception and cognition."
"Properly sourced, contextualized, simple and uncluttered. The underlying data is accurate and up-to-date to make sure that insights are reliable."
"Graphical items are well-chosen for the given datasets and aesthetically appealing, with shapes, colors and other visual elements used deliberately in a meaningful and non-distracting manner."
"Effective information visualization is aware of the needs and concerns and the level of expertise of the target audience, deliberately guiding them to the intended conclusion."
"Used by domain experts and executives for making decisions, monitoring performance, generating new ideas and stimulating research."
"Check the quality of data, find errors, unusual gaps and missing values in data, clean data, explore the structures and features of data and assess outputs of data-driven models."
"Data and information visualization can constitute a part of data storytelling, where they are paired with a coherent narrative structure or storyline to contextualize the analyzed data and communicate the insights gained from analyzing the data clearly and memorably."
"The neighboring field of visual analytics marries statistical data analysis, data and information visualization and human analytical reasoning through interactive visual interfaces to help human users reach conclusions, gain actionable insights and make informed decisions."
"Descriptive statistics, visual communication, graphic design, cognitive science and, more recently, interactive computer graphics and human-computer interaction."
"It is argued by authors such as Gershon and Page that it is both an art and a science."
"Research into how people read and misread various types of visualizations is helping to determine what types and features of visualizations are most understandable and effective in conveying information."
"Unintentionally poor or intentionally misleading and deceptive visualizations (misinformative visualization) can function as powerful tools which disseminate misinformation, manipulate public perception and divert public opinion toward a certain agenda."
"Data visualization literacy has become an important component of data and information literacy in the information age akin to the roles played by textual, mathematical and visual literacy in the past." (Note: Not all questions could be answered directly from the provided paragraph.