"Machine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive."
Machine learning is a field that focuses on developing algorithms and techniques to enable computers to automatically learn and improve from data without being explicitly programmed.
"the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms."
"Recently, generative artificial neural networks have been able to surpass results of many previous approaches."
"Machine-learning approaches have been applied to large language models, computer vision, speech recognition, email filtering, agriculture and medicine."
"where it is too costly to develop algorithms to perform the needed tasks."
"The mathematical foundations of ML are provided by mathematical optimization (mathematical programming) methods."
"Data mining is a related (parallel) field of study, focusing on exploratory data analysis through unsupervised learning."
"ML is known in its application across business problems under the name predictive analytics."
"Although not all machine learning is statistically based, computational statistics is an important source of the field's methods."
"the problems are solved by helping machines 'discover' their 'own' algorithms without needing to be explicitly told what to do by any human-developed algorithms."
"Machine-learning approaches have been applied to large language models, computer vision, speech recognition, email filtering, agriculture and medicine."
"development of algorithms by human programmers would be cost-prohibitive"
"generative artificial neural networks have been able to surpass results of many previous approaches."
"Data mining is a related (parallel) field of study, focusing on exploratory data analysis through unsupervised learning."
"Machine-learning approaches have been applied to...medicine."
"helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms."
"the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms."
"The mathematical foundations of ML are provided by mathematical optimization (mathematical programming) methods."
"where it is too costly to develop algorithms to perform the needed tasks."
"Although not all machine learning is statistically based, computational statistics is an important source of the field's methods."